Perimeter preserver of matrices over semifields
نویسندگان
چکیده
منابع مشابه
Rank and Perimeter Preserver of Rank-1 Matrices over Max Algebra
For a rank-1 matrix A = a ⊗ b over max algebra, we define the perimeter of A as the number of nonzero entries in both a and b. We characterize the linear operators which preserve the rank and perimeter of rank-1 matrices over max algebra. That is, a linear operator T preserves the rank and perimeter of rank-1 matrices if and only if it has the form T (A) = U ⊗ A ⊗ V , or T (A) = U ⊗ A ⊗ V with ...
متن کاملSpectral Lattices of Reducible Matrices over Completed Idempotent Semifields
Previous work has shown a relation between L-valued extensions of FCA and the spectra of some matrices related to L-valued contexts. We investigate the spectra of reducible matrices over completed idempotent semifields in the framework of dioids, naturally-ordered semirings, that encompass several of those extensions. Considering special sets of eigenvectors also brings out complete lattices in...
متن کاملCommutative semifields of rank 2 over their middle nucleus
This article is about finite commutative semifields that are of rank 2 over their middle nucleus, the largest subset of elements that is a finite field. These semifields have a direct correspondence to certain flocks of the quadratic cone in PG(3, q) and to certain ovoids of the parabolic space Q(4, q). We shall consider these links, the known examples and non-existence results.
متن کاملCommutative semifields of rank 2 over their nucleus
This article is about finite commutative semifields that are of rank 2 over their nucleus, the largest subset of elements that is a finite field. These semifields have a direct correspondence to certain flocks of the quadratic cone in PG(3, q) and to certain ovoids of the parabolic space Q(4, q). We shall consider these links, the known examples and non-existence results. 1 Semifields A finite ...
متن کاملOn nest modules of matrices over division rings
Let $ m , n in mathbb{N}$, $D$ be a division ring, and $M_{m times n}(D)$ denote the bimodule of all $m times n$ matrices with entries from $D$. First, we characterize one-sided submodules of $M_{m times n}(D)$ in terms of left row reduced echelon or right column reduced echelon matrices with entries from $D$. Next, we introduce the notion of a nest module of matrices with entries from $D$. We ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Czechoslovak Mathematical Journal
سال: 2006
ISSN: 0011-4642,1572-9141
DOI: 10.1007/s10587-006-0033-5